Astronomy Now Online

Top Stories

Hubble captures rare alignment

...the Hubble team have released this image of a rare alignment between two spiral galaxies, bringing to life the normally invisible tentacles of dust that extend further beyond the visible disc than previously thought...

read more

First image of planet around Sunlike star

...using the Gemini North telescope on Mauna Kea, astronomers have taken what is likely the first picture of a planet around a ‘normal’ star similar to our Sun...

read more

Our Sun could be an immigrant star simulations suggest that stars such as the Sun can migrate great distances within galaxies like our Milky Way, changing our entire view of how so-called habitable zones can arise in a galactic disc...

read more

Spaceflight Now +

Subscribe to Spaceflight Now Plus for access to our extensive video collections!
How do I sign up?
Video archive

STS-120 day 2 highlights

Flight Day 2 of Discovery's mission focused on heat shield inspections. This movie shows the day's highlights.


STS-120 day 1 highlights

The highlights from shuttle Discovery's launch day are packaged into this movie.


STS-118: Highlights

The STS-118 crew, including Barbara Morgan, narrates its mission highlights film and answers questions in this post-flight presentation.

 Full presentation
 Mission film

STS-120: Rollout to pad

Space shuttle Discovery rolls out of the Vehicle Assembly Building and travels to launch pad 39A for its STS-120 mission.


Dawn leaves Earth

NASA's Dawn space probe launches aboard a Delta 2-Heavy rocket from Cape Canaveral to explore two worlds in the asteroid belt.

 Full coverage

Dawn: Launch preview

These briefings preview the launch and science objectives of NASA's Dawn asteroid orbiter.

 Launch | Science

Become a subscriber
More video

Water present on Mars billion years longer

Posted: September 18, 2008

New research suggests that water may have played a role in shaping parts of the Martian landscape for a billion years longer than previous studies have proposed.

According to many studies, flowing water helped carve out giant valleys like Valles Marineris – a huge canyon system that runs nearly a quarter of the way round Mars’ equator – up until around 3.7 billion years ago. But the results of new research, led by Catherine Weitz of the Planetary Science Institute, present strong evidence that sustained rainfall and associated valley-carving events also occurred on the plains surrounding Valles Marineris as recently as three billion years ago.

Valles Marineris is made up of a network of canyons and stretches around nearly one quarter of Mars' equator. It is about 4000 kilometres long and in some places 600 kilometres wide and 10 kilometres deep, seven times deeper than Earth's Grand Canyon. Image: USGS.

To arrive at this conclusion the research team used the Mars Reconnaissance Orbiter (MRO) HiRISE camera to study light-toned layered sediments that were likely laid down by flowing water inside Valles Marineris, and compared them to deposits found outside the canyon. The HiRISE camera enabled them to pick out features down to a size of around one metre.

The layered deposits that appear inside canyons within the Valles Marineris system were found to share similar characteristics in terms of their composition, brightness and shape, suggesting that they were formed in the same type of environment. On the plains, however, the scientists see a wide variety of different features, such as sediment layers of varying thickness that have eroded at different rates to make a step-like pattern or ‘inverted channels’. Inverted channels form on Earth when sediment is deposited in streambeds over time. When the streams dry up, the softer terrain erodes away, leaving the harder, cemented sediments standing above the surrounding terrain.

"What we found was that these light-toned layered deposits on the plains are very different from those within Valles Marineris," says Weitz. "There are a lot of variations in brightness, colour, and erosional properties that we don't see for light-toned deposits inside Valles Marineris. This suggests that the processes that created the deposits outside Valles Marineris were different from those operating inside."

(A) HiRISE image showing inverted channels along the plains west of a canyon called Juventae Chasma within the Valles Marineris system. (B-C) Examples of locations where light-toned beds are exposed within and between the inverted channels (bold arrows). Image courtesy C. Weitz.

The scientists speculate that either the properties of the materials changed over time, or there were variations in processes outside of Valles Marineris that affected the deposits in different ways, such as water related activity that occurred on a large scale around the Valles Marineres system for sustained time periods, rather than in local areas for brief episodes as other research groups suggest.

“The layering seen in the deposits on the plains shares some morphologic similarities with other sedimentary deposits on Mars that were emplaced by water activity, such as in Holden crater and the Eberswalde delta,” Weitz tells Astronomy Now. "This was a big surprise because no one thought we'd be seeing these extensive fluvial systems in the plains all around Valles Marineris that were formed during the Hesperian Era [3.7-3 billion years ago]. Everyone thought that by then the climate had pretty much dried out."

Although it is plausible that the sediment layers could also have been deposited by wind or volcanic processes, the team think this is unlikely since they identified minerals that often form in the presence of liquid water on Earth.


Related Story

Sep 11 Episodic not catastrophic flooding on Mars read more

Jul  22 Organic cemeteries could dominate ancient... read more