Astronomy Now Home
Home Magazine Sky Chart Resources Store

On Sale Now!



The September 2014 issue of Astronomy Now is on sale! Order direct from our store (free 1st class post & to UK addresses). The Astronomy Now iPad/iPhone editions are now available worldwide on the App Store.



Top Stories



Earthshine used to test life detection method
...By imagining the Earth as an exoplanet, scientists observing our planet's reflected light on the Moon with ESO's Very Large Telescope have demonstrated a way to detect life on other worlds...
  READ MORE

Solid buckyballs discovered in space
...Astronomers using NASA’s Spitzer Space Telescope have detected a particular type of molecule, given the nickname “buckyball”, in a solid form for the first time...
  READ MORE

Steamy water-world gets the Hubble treatment
...Hubble Space Telescope observations of a 7 Earth-mass planet find an unusual water-rich world swathed in a thick, steamy atmosphere...
  READ MORE








Debris discs warped by interstellar wind
DR EMILY BALDWIN
ASTRONOMY NOW

Posted: August 28, 2009


Bookmark and Share

The curious shapes of some potentially planet harbouring dust-filled discs around stars could be explained by interactions with the local interstellar gas.

The warps and bends in debris discs around other stars is often attributed to the presence of obscured planets or past encounters with a passing star. But the simple interaction between dust and interstellar gas could also explain the weird and wonderful shapes carved in the discs of young stellar systems.

The inner (yellow) portion of HD 61005's disc spans a distance equivalent to the width of Neptune's orbit. This young star is located 100 light years away in the constellation Puppis. This false colour Hubble view masks the star's light in order to observe the details of the disc. Image: NASA/ESA/D. Hines (Space Science Inst., New Mexico) and G. Schneider (Univ. of Arizona).

These primitive discs are packed with small asteroid- and comet-like bodies that have the potential to grow into planets through collisions. A side-effect of these collisions is the production of a vast quantity of fine dust. "This fine dust is usually removed through collisions among the particles, radiation pressure from the star's light and other forces," explains John Debes at NASA's Goddard Space Flight Center.

As a star moves through a galaxy it encounters thin gas clouds that create a kind of interstellar wind. "The drag from interstellar gas just takes them [the dust particle] on a different journey than they otherwise would have had," continues Debes. "The small particles slam into the flow, slow down, and gradually bend from their original trajectories to follow it." The force only effects the smallest particles, those that measure about one micrometre across – comparable to the size of smoke particles.

In a study of the dust disc of HD 32297, a 340 light year distant star in the constellation of Orion, a team of astronomers led by Debes noticed that the interior of the star's dust disc was warped. "Other research indicated there were interstellar gas clouds in the vicinity," says Debes. "The pieces came together to make me think that gas drag was a good explanation for what was going on."

In this scenario the debris disc can be sculpted into unique shapes as the interstellar wind bounces into the dust particles. If the collision is face-on, such as in the HD 61005 system, the edge of the disc bends gently away from the direction of motion, with fine dust trailing behind like a wake from a ship. In an edge-on collision a lop-sided disc would be formed.

"The drag from interstellar gas only affects the outskirts of the disc, where the star’s gravity can’t really hold onto the material," says team member Alycia Weinberger of the Carnegie Institution of Washington.

These 100 million year old systems resemble our own Solar System soon after the planets had formed, and although it is not known if planets lurk in the discs of the two systems highlighted in this study, a better understanding of processes affecting the outer edges of these dusty reservoirs could shed light on how ice giants like Uranus and Neptune, and the depository of smaller bodies such as the Kuiper Belt objects, arose in the Solar System.

"It looks like interstellar gas helps young planetary systems shed dust much as a summer breeze helps dandelions scatter seeds," concludes Goddard-based team member Marc Kuchner.

The Planets
From tiny Mercury to distant Neptune and Pluto, The Planets profiles each of the Solar System's members in depth, featuring the latest imagery from space missions. The tallest mountains, the deepest canyons, the strongest winds, raging atmospheric storms, terrain studded with craters and vast worlds of ice are just some of the sights you'll see on this 100-page tour of the planets.
 GET YOUR COPY

Hubble Reborn
Hubble Reborn takes the reader on a journey through the Universe with spectacular full-colour pictures of galaxies, nebulae, planets and stars as seen through Hubble's eyes, along the way telling the dramatic story of the space telescope, including interviews with key scientists and astronauts.
 GET YOUR COPY

3D Universe
Witness the most awesome sights of the Universe as they were meant to be seen in this 100-page extravaganza of planets, galaxies and star-scapes, all in 3D!
 GET YOUR COPY


HOME | NEWS ARCHIVE | MAGAZINE | SOLAR SYSTEM | SKY CHART | RESOURCES | STORE | SPACEFLIGHT NOW

© 2014 Pole Star Publications Ltd.