Astronomy Now Home
Home Magazine Sky Chart Resources Store

On Sale Now!

The August 2014 issue of Astronomy Now is on sale! Order direct from our store (free 1st class post & to UK addresses). The Astronomy Now iPad/iPhone editions are now available worldwide on the App Store.

Top Stories

Earthshine used to test life detection method
...By imagining the Earth as an exoplanet, scientists observing our planet's reflected light on the Moon with ESO's Very Large Telescope have demonstrated a way to detect life on other worlds...

Solid buckyballs discovered in space
...Astronomers using NASA’s Spitzer Space Telescope have detected a particular type of molecule, given the nickname “buckyball”, in a solid form for the first time...

Steamy water-world gets the Hubble treatment
...Hubble Space Telescope observations of a 7 Earth-mass planet find an unusual water-rich world swathed in a thick, steamy atmosphere...

Solar wind pulses strip
Mars' atmosphere

Posted: 15 March 2010

Bookmark and Share

Mars is constantly losing small amounts of its atmosphere into space, but a new study shows that the loss rate may be enhanced by pulses of solar wind energy.

The researchers analysed solar wind data from the Advanced Composition Explorer (ACE) and Mars Express observations that track the flux of heavy ions leaving Mars' atmosphere, and found that bursts of atmospheric loss correlate with solar events known as corotating interaction regions (CIRs).

"CIRs form when a fast solar wind stream catches up a slower stream and they collide," explains Hans Nilsson of the of the Swedish Institute of Space Physics. "The density of the solar wind plasma and magnetic field increase in these regions and will therefore also have a stronger influence on any planetary atmosphere it may interact with." That is, when the CIR pulses pass by the red planet, it can drive away particles from Mars' atmosphere.

Mars' atmosphere is ripped away by solar wind pulses. Image: NASA/JPL-Caltech/MSSS

The researchers found that the outflow of atmospheric particles from Mars was about 2.5 times the outflow when CIRs were present than when these events were not occurring. Furthermore, about one third of the material lost from Mars into space is thought to be lost during CIRs.

The study will help scientists better understand the evolution of Mars' atmosphere. "It is possible that solar wind interaction was important to remove atmosphere and oceans from Mars," Nilsson tells Astronomy Now. "The main importance of the CIR study is to show how much the atmospheric loss increases when the plasma and magnetic field density of the solar wind increases. The total loss during the period of observation is not that significant, but if losses were 2.5 times higher in the past when the solar wind was more active, in addition to the fact that it may be several times higher during high solar activity, then the increased loss during CIR events is important."

The effect seems to be absent from Venus and Earth. Even though the solar wind dynamic pressure is greater at Venus than Mars and the transfer of energy between the solar wind and Venus' plasma is more efficient, the CIR region may not have enough time to form at the orbit of Venus, resulting in weaker, if any, 'pressure pulses'. Earth also escapes the effect because of its strong magnetic field that protects the atmosphere.

The team hope to continue studying plasma escape mechanisms at Mars until the next solar cycle maximum, in order to see how the outflow rates vary with the phase of the solar cycle. “These observations were made during a very quiet period in the eleven year solar cycle and so we would expect the effect of these and other large scale disturbances to be higher at other times in the solar cycle,” comments Mark Lester, Head of the Department of Physics and Astronomy at the University of Leicester.

The team's results are published in the journal Geophysical Research Letters.

The Planets
From tiny Mercury to distant Neptune and Pluto, The Planets profiles each of the Solar System's members in depth, featuring the latest imagery from space missions. The tallest mountains, the deepest canyons, the strongest winds, raging atmospheric storms, terrain studded with craters and vast worlds of ice are just some of the sights you'll see on this 100-page tour of the planets.

Hubble Reborn
Hubble Reborn takes the reader on a journey through the Universe with spectacular full-colour pictures of galaxies, nebulae, planets and stars as seen through Hubble's eyes, along the way telling the dramatic story of the space telescope, including interviews with key scientists and astronauts.

3D Universe
Witness the most awesome sights of the Universe as they were meant to be seen in this 100-page extravaganza of planets, galaxies and star-scapes, all in 3D!


© 2014 Pole Star Publications Ltd.