Astronomy Now Home
Home Magazine Resources Store

On Sale Now!



The October 2014 issue of Astronomy Now is on sale! Order direct from our store (free 1st class post & to UK addresses). The Astronomy Now iPad/iPhone editions are now available worldwide on the App Store.



Top Stories



Earthshine used to test life detection method
...By imagining the Earth as an exoplanet, scientists observing our planet's reflected light on the Moon with ESO's Very Large Telescope have demonstrated a way to detect life on other worlds...
  READ MORE

Solid buckyballs discovered in space
...Astronomers using NASA’s Spitzer Space Telescope have detected a particular type of molecule, given the nickname “buckyball”, in a solid form for the first time...
  READ MORE

Steamy water-world gets the Hubble treatment
...Hubble Space Telescope observations of a 7 Earth-mass planet find an unusual water-rich world swathed in a thick, steamy atmosphere...
  READ MORE








Asteroid weighs in prior to spacecraft visit
BY AMANDA DOYLE
ASTRONOMY NOW
Posted: 2 June 2012


Bookmark and Share

1999RQ36 A computer generated imaged of asteroid 1999 RQ36, using radar data from the Arecibo Observatory. Image: NASA/NSF/Cornell/Nolan.

Scientists have used an innovative technique that combines radar and infrared measurements in order to weigh the asteroid 1999 RQ36, the target for an ambitious NASA mission to return a sample of its regolith.

Celestial bodies can be weighed if there is gravitational interplay between them and another body; however this method cannot be implemented for asteroid 1999 RQ36. "This asteroid is not a binary system (as far as we know), and it is not big enough to perturb other natural bodies," explains Steve Chesley from JPL's Near-Earth Object Program Office. "Thus there is no way to use gravity perturbations to estimate the mass in this case."

1999 RQ36 is the target for NASA's OSIRIS-Rex, a sample return mission due to launch in 2016. When OSIRIS-Rex reaches its destination in 2019, it will be able to measure the space rock's mass from the way in which the gravity tugs on the spacecraft. Such a technique has already been implemented many times, and can even detect subtle variations in mass on a body. NASA's dual GRAIL craft are currently using this method to produce a high resolution gravity map of the Moon.

However, not all bodies in the Solar System have the luxury of a spacecraft visit in order to determine their mass, and even though 1999 RQ36 has one on the cards, it is still useful to know the mass prior to the arrival of OSIRIS-Rex.

osiris-rex Artist's impression of the OSIRIS-REx spacecraft at asteroid 1999 RQ36. Image: NASA/GSFC/UAan.

In order to calculate the mass of 1999 RQ36, an intricate knowledge of the asteroid's orbit had to be obtained using twelve years of radar data from the Goldstone Solar System Radar in California and the Arecibo Observatory in Puerto Rico. However, the path of the asteroid was not quite where it was predicted to be; in fact it had deviated from its calculated orbit by 160 kilometres over twelve years.

The cause of the asteroid's detour is an additional force acting upon it, known as the Yarkovsky effect. As an asteroid absorbs light from the Sun and re-emits it as heat, a small propulsive force is generated that give the asteroid a little extra kick. "The Yarkovsky effect relies on the fact that sunlight warms the surface during the day and then the surface cools during the night. So the evening temperatures are warmer than morning, just as they are on Earth," Chesley tells Astronomy Now. "The surface material essentially stores energy during the day and re-radiates it later, and the Yarkovsky effect depends critically upon the 'insulation' qualities of the surface material."

If the asteroid is swathed in a blanket of dust, heating and cooling will occur rapidly and thus the Yarkovsky effect will be weak. A solid rock surface, on the other hand, will retain heat for longer, therefore providing more fuel for the Yarkovsky effect.

In 2007, observations were made by Josh Emery from the University of Tennessee using NASA's Spitzer Space Telescope in order to gather information on the thermal properties of 1999 RQ36. The infrared emissions of the asteroid revealed details on how efficient the insulation is, and thus allowed a thorough understanding of the Yarkovsky effect for 1999 RQ36.

Once the orbit, size, and the Yarkovsky effect had been accounted for, calculating the density, and thus the mass, of the asteroid were made possible. The density of the asteroid is similar to that of water, and shows that it is likely a very porous ensemble of rocks and dust. This is good news for OSIRIS-Rex as it will make the collection of samples an easier task.

The Planets
From tiny Mercury to distant Neptune and Pluto, The Planets profiles each of the Solar System's members in depth, featuring the latest imagery from space missions. The tallest mountains, the deepest canyons, the strongest winds, raging atmospheric storms, terrain studded with craters and vast worlds of ice are just some of the sights you'll see on this 100-page tour of the planets.
 GET YOUR COPY

Hubble Reborn
Hubble Reborn takes the reader on a journey through the Universe with spectacular full-colour pictures of galaxies, nebulae, planets and stars as seen through Hubble's eyes, along the way telling the dramatic story of the space telescope, including interviews with key scientists and astronauts.
 GET YOUR COPY

3D Universe
Witness the most awesome sights of the Universe as they were meant to be seen in this 100-page extravaganza of planets, galaxies and star-scapes, all in 3D!
 GET YOUR COPY


HOME | NEWS ARCHIVE | MAGAZINE | SOLAR SYSTEM | SKY CHART | RESOURCES | STORE | SPACEFLIGHT NOW

© 2014 Pole Star Publications Ltd.