Astronomy Now Home
Home Magazine Resources Store

On Sale Now!

The October 2014 issue of Astronomy Now is on sale! Order direct from our store (free 1st class post & to UK addresses). Astronomy Now is the only astronomy magazine specially designed to be read on tablets and phones. Download the app from Google Play Store or the Apple App Store.

Top Stories

Earthshine used to test life detection method
...By imagining the Earth as an exoplanet, scientists observing our planet's reflected light on the Moon with ESO's Very Large Telescope have demonstrated a way to detect life on other worlds...

Solid buckyballs discovered in space
...Astronomers using NASA’s Spitzer Space Telescope have detected a particular type of molecule, given the nickname “buckyball”, in a solid form for the first time...

Steamy water-world gets the Hubble treatment
...Hubble Space Telescope observations of a 7 Earth-mass planet find an unusual water-rich world swathed in a thick, steamy atmosphere...

Earth's gold came from colliding dead stars
Posted: 18 July 2013

We value gold for many reasons: its beauty, its usefulness as jewelry, and its rarity. Gold is rare on Earth in part because it's also rare in the universe. Unlike elements like carbon or iron, it cannot be created within a star. Instead, it must be born in a more cataclysmic event - like one that occurred last month known as a short gamma-ray burst (GRB).

This artist's conception portrays two neutron stars at the moment of collision. New observations confirm that colliding neutron stars produce short gamma-ray bursts. Such collisions produce rare heavy elements, including gold. All Earth's gold likely came from colliding neutron stars. Credit: Dana Berry, SkyWorks Digital, Inc.
Observations of this GRB provide evidence that it resulted from the collision of two neutron stars - the dead cores of stars that previously exploded as supernovae. Moreover, a unique glow that persisted for days at the GRB location potentially signifies the creation of substantial amounts of heavy elements - including gold.

"We estimate that the amount of gold produced and ejected during the merger of the two neutron stars may be as large as 10 moon masses - quite a lot of bling!" says lead author Edo Berger of the Harvard-Smithsonian Center for Astrophysics (CfA).

Berger presented the finding today in a press conference at the CfA in Cambridge, Mass.

A gamma-ray burst is a flash of high-energy light (gamma rays) from an extremely energetic explosion. Most are found in the distant universe. Berger and his colleagues studied GRB 130603B which, at a distance of 3.9 billion light-years from Earth, is one of the nearest bursts seen to date.

Gamma-ray bursts come in two varieties - long and short - depending on how long the flash of gamma rays lasts. GRB 130603B, detected by NASA's Swift satellite on June 3rd, lasted for less than two-tenths of a second.

Although the gamma rays disappeared quickly, GRB 130603B also displayed a slowly fading glow dominated by infrared light. Its brightness and behavior didn't match a typical "afterglow," which is created when a high-speed jet of particles slams into the surrounding environment.

Instead, the glow behaved like it came from exotic radioactive elements. The neutron-rich material ejected by colliding neutron stars can generate such elements, which then undergo radioactive decay, emitting a glow that's dominated by infrared light - exactly what the team observed.

"We've been looking for a 'smoking gun' to link a short gamma-ray burst with a neutron star collision. The radioactive glow from GRB 130603B may be that smoking gun," explains Wen-fai Fong, a graduate student at the CfA and a co-author of the paper.

The team calculates that about one-hundredth of a solar mass of material was ejected by the gamma-ray burst, some of which was gold. By combining the estimated gold produced by a single short GRB with the number of such explosions that have occurred over the age of the universe, all the gold in the cosmos might have come from gamma-ray bursts.

"To paraphrase Carl Sagan, we are all star stuff, and our jewelry is colliding-star stuff," says Berger.

The team's results have been submitted for publication in The Astrophysical Journal Letters and are available online. Berger's co-authors are Wen-fai Fong and Ryan Chornock, both of the CfA.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

The Planets
From tiny Mercury to distant Neptune and Pluto, The Planets profiles each of the Solar System's members in depth, featuring the latest imagery from space missions. The tallest mountains, the deepest canyons, the strongest winds, raging atmospheric storms, terrain studded with craters and vast worlds of ice are just some of the sights you'll see on this 100-page tour of the planets.

Hubble Reborn
Hubble Reborn takes the reader on a journey through the Universe with spectacular full-colour pictures of galaxies, nebulae, planets and stars as seen through Hubble's eyes, along the way telling the dramatic story of the space telescope, including interviews with key scientists and astronauts.

3D Universe
Witness the most awesome sights of the Universe as they were meant to be seen in this 100-page extravaganza of planets, galaxies and star-scapes, all in 3D!


© 2014 Pole Star Publications Ltd.